
CSC6052/5051/4100/DDA6307/
MDS5110

Natural Language Processing

Spring 2025
Benyou Wang

School of Data Science

Lecture 3-1: Word Vectors

before the lecture

DeepSeek and Spring Festival

Founder of DeepSeek, Wenfeng Liang becomes famous (年轻人的偶像)

For DeepSeek

DeepSeek V3
- MLA and fine-grained experts for MoE (old DeepSeek also has this)

- auxiliary-loss-free strategy for load balancing and a multi-token prediction training objective

- FP8 training mixed precision (previously FP16/BF16) and many other optimization of trianning

DeepSeek R1
- New way to achieve o1-level reasoning (without supervised finetuning): 1) DeepSeek-R1-Zero, a model

trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary

step; plus DeepSeek-R1 with multi-stage training and cold-start data before RL

https://arxiv.org/html/2412.19437v1 DeepSeek-V3 Technical Report

https://arxiv.org/abs/2501.12948 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948

Remarks

- In total 6M $ for training budget (1/30 of GPT-4o)

- Reaching GPT-4o and O1 –level performance

- DeepSeek App ranks first in both China and US APP store. Breaking APP downloading record (previously

set by ChatGPT)

- Every big guys in US came out to talk about DeepSeek, negatively affecting the US stock
- DeepSeek's Al breakthrough 'is biggest shock to comeout of China in 185 years’ 首都医科大学校长饶毅认为，在科学和技

术相关的方面，185年来中国出现的对人类最大的震撼是DeepSeek

- It is open-source and it could be deployed by Huawei TPU Devices (inference without NVIDIA)

It is time for LLM applications
Prompting, agent and build you own APP right now

Rethinking DeepSeek

- Budget is only about the final-round training, but this is a part of cost (exploring, testing and others are also costly).

- The training efficiency could be or was already achieved by other companies; but these companies did not claim from

this aspect (Demis mentioned Google Gemini).

- Distilled from western models (Demis claimed)

- Applied existing technologies well (did not invent something new)

https://pune.news/market/googles-demis-hassabis-criticizes-deepseeks-ai-model-and-cost-assertions-304887/

Quoted from Demis Hassabis, CEO of Deepmind, Nobel Prize in Chemistry

https://www.google.com/search?sca_esv=0fc7dd398656b67a&rlz=1C1GCEU_enHK1009HK1009&sxsrf=AHTn8zpBxjgz7U666odd93Z33Vodu3kPnw:1739372223499&q=Nobel+Prize+in+Chemistry&si=APYL9bu1Sl4M4TWndGcDs6ZL5WJXWNYEL_kgEEwAe0iMZIocdQ8QleTIreZYf_hCOJkx3aoTvQz0MBiLD8zAwrxzHZuMjqRNJEYKu5nHaeHSolIGsOUvHL2f3FwtNt4lWL3JQ-BeoHhkWNycMD0u_oKTsAL_JPzc_5zdjvDdaURSVMgfDkpRKg2_DvlZ3uw9wb6-nqyDfhAf0dY3Hc8zhZXwox1OY7GUlSuygwdbtmhd-OBmN_pPoDYcsQlKmNWRKM5S5HwqIAFwFwyqYO1cdVBx4C1inOUqag%3D%3D&sa=X&ved=2ahUKEwir6428sr6LAxWBmq8BHdF2G60QmxMoAHoECB0QAg

An analogy of distillation

ChatGPT: Fishing from the sea to a pool Others : directly fishing from such a small pool

We should not be always following,
we should try to lead.

Recap and overview
Relation between Word vectors and language modeling

How do we represent words in NLP models?
• n-gram models

• Naive Bayes

Each word is just a string

or indices wi in the

vocabulary list

string match

• Logistic regression

How do we represent words in NLP models?

Why word meaning in NLP models?
• With words, a feature is a word identity (= string)

• Feature 5: `The previous word was “terrible”’

• Requires exact same word to be in the training and testing set

“terrible” ≠ “horrible”

• If we can represent word meaning in vectors:

• The previous word was vector [35, 22, 17, …]

• Now in the test set we might see a similar vector [34, 21, 14, …]

• We can generalize to similar but unseen words!!!

• Synonyms: couch/sofa, car/automobile, filbert/hazelnut

• Antonyms: dark/light, rise/fall, up/down

• Some words are not synonyms but they share some

element of meaning

• cat/dog, car/bicycle, cow/horse

• Some words are not similar but they are related

• coffee/cup, house/door, chef/menu

• Affective meanings or connotations:

What do words mean?

SimLex-999

(Osgood et al., 1957)

Lexical resources

http://wordnetweb.princeton.ed

u/

(-) Huge amounts of human

labor to create and maintain

http://wordnetweb.princeton.edu/

The big idea: model of meaning focusing on similarity

Similar words are “nearby

in the vector space”

(Bandyopadhyay et al. 2022)

Learning LMs via neural network brings word

embedding

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin. A Neural Probabilistic Language Model. JMLR, 2003

To contextualized word vectors using LMs

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer. Deep

contextualized word representations. https://arxiv.org/abs/1802.05365.

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is implemented as a very large neural network of 175-

billion parameters!

Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)
The latter two usually involve a

different pre-training objective.

Contents

• Motivations to word embedding/word vectors

• Word embedding and word vectors

• Some variants

• Evaluations

the students opened their

•Question: How to learn a Language Model?

•Answer (pre- Deep Learning): learn an n-gram Language Model!

•Definition: An n-gram is a chunk of n consecutive words.

•unigrams: “the”, “students”, “opened”, ”their”

•bigrams: “the students”, “students opened”, “opened their”

•trigrams: “the students opened”, “students opened their”

•four-grams: “the students opened their”

•Idea: Collect statistics about how frequent different n-grams are and use

these to predict next word.

N-gram Language Models

N-gram Language Models

•First we make a Markov assumption: 𝑥
(n)

depends only on the preceding n-1 words

•Question: How do we get these n-gram and (n-1)-gram probabilities?

•Answer: By counting them in some large corpus of text!

(statistical approximation)

N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their

discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• P(exams | students opened their) = 0.1
24

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.

Typically, we can’t have n bigger than 5.

Problem: What if “students

opened their” never occurred in

data? Then we can’t calculate

probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students

opened their 𝑤” never

occurred in data? Then 𝑤 has

probability 0!

Sparsity Problem 1

(Partial) Solution: Add small

𝛿 to the count for every 𝑤∈
𝑉. This is called smoothing.

(Partial) Solution: Just condition on

“opened their” instead.

This is called backoff.

25

Storage Problems with n-gram Language Models

26

Storage: Need to store

count for all n-grams

you saw in the corpus.

Increasing n or increasing

corpus increases model size!

How to build a neural language model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition :

LOCATION

in Paris are amazingmuseums 27

A fixed-window neural Language Model

the students opene

d

their

books

laptop

s

concatenated word embeddings

words / one-hot vectors

hidden layer

a zo

o

output distribution

28

A fixed-window neural Language Model

the

stude

nts

opene

d

thei

r

book

s laptop

s

a zo

o

Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥(!) and 𝑥(") are multiplied by completely

different weights in 𝑊. No symmetry in how

the inputs are processed.

We need a neural architecture that can

process any length input

Recurrent NN is the solution !

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Word Embedding and Word vectors

the

stude

nts

opene

d

thei

r

book

s laptop

s

a zo

o

Word embedding/Vectors !

Byproducts of NNLM : word embedding

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

❏ the idea that is represented by a word, phrase, etc.

❏ the idea that a person wants to express by using words, signs, etc.

❏ the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

❏ signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

❏ Tree ⟺ {🌳, 🌲, 🌴, …}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Representing words as discrete symbols

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

❏ In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

❏ Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

❏ Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Distributional hypothesis

• “The meaning of a word is its use in the language”

• “If A and B have almost identical environments we

say that they are synonyms.”

• “You shall know a word by the company it keeps”

[Wittgenstein PI 43]

[Harris 1954]

[Firth 1957]

Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently

appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby

(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Distributional hypothesis

Ongchoi is delicious sautéed with garlic 蒜蓉Ongchoi味道鲜美

Ongchoi is superb over rice Ongchoi配米饭吃起来味道极佳

Ongchoi leaves with salty sauces Ongchoi叶配咸酱

“Ongchoi”

Distributional hypothesis

Q: What do you think ‘Ongchoi’

means?

A) a savory snack

B) a green vegetable

C) an alcoholic beverage

D) a cooking sauce

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

“Ongchoi”

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

You may have seen these

sentences before:

spinach sautéed with garlic over rice chard stems

and leaves are delicious collard greens and other

salty leafty greens

Something similar to Spinach (菠菜)？

Distributional hypothesis

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard greens

How can do the same thing computationally?

•

•

Count the words in the context of ongchoi

See what other words occur in those contexts

We can represent a word’s context using vectors!

Word embeddings

Count-based approaches

• Used since the 90s

• Sparse word-word co-occurrence PPMI matrix

• Decomposed with SVD

Prediction-based approaches

• Formulated as a machine learning problem

• Word2vec (Mikolov et al., 2013)

• GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)

“Similar words occur in similar contexts”

Goal: represent words as short (50-300

dimensional) & dense (real-valued) vectors

Word embeddings: the learning problem

Learning vectors from text for representing words

• Input: a large text corpus, vocabulary V,

vector dimension d (e.g., 300)

• Output:

Each coordinate/dimension of the

vector doesn’t have a particular

interpretation

Word embeddings

• Basic property: similar words have similar vectors

word w*= “sweden”

cos(u, v) ranges between -1 and 1

Word embeddings

• They have some other nice properties too!

ACL’19

word2vec
•

•

(Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

(Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Skip-gramContinuous Bag of Words

(CBOW)

Thomas Mikolov

Skip-gram

A classification

problem!

•

•

•

Assume that we have a large corpus w1, w2, …, wT ∈ V

P(b ∣ a) = given the center word

is a, what is the probability that b is a

context word?

P(⋅∣ a) is a probability

distribution defined over V:

Context: a fixed window of size 2m (m = 2 in the example)

Key idea: Use each word to predict other words in its context

We are going to define

this distribution soon!

Our goal is to find parameters that can maximize

Convert the training data into:

(into, problems)

(into, turning)

(into, banking)

(into, crises)

(banking, turning)

(banking, into)

(banking, crises)

(banking, as)

…

Skip-gram

P(turning ∣ banking) ×P(into ∣ banking) ×P(crises ∣ banking) ×P(as ∣ banking)…P(problems ∣ into) ×P(turning ∣ into) × P(banking ∣ into) × P(crises ∣ into) ×

Skip-gram: objective function
• For each position t = 1,2,…T, predict context words within context size m,

given center word wt:

• It is equivalent as minimizing the (average) negative log likelihood:

How to define P(wt+j∣ wt; θ)?

• Use two sets of vectors for each word in the vocabulary

ua ∈ ℝd: vector for center word a

vb ∈ ℝd: vector for context word

, ∀a ∈ V

, ∀b ∈ V

• Use inner product ua ⋅ vb to measure how likely word a appears with context word b

Recall that P(⋅∣ a) is a

probability distribution defined over

V…

… vs multinominal logistic regression

•

•

Essentially a |V|-way classification problem

If we fix , it is reduced to a multinomial

logistic regression problem.

• However, since we have to learn both and

together, the training objective is non-convex.

P(y = c | x) =
exp(wc ⋅ x + bc)

∑
m

j=1
exp(wj ⋅ x + bj)

Multinomial logistic

regression:

… vs multinominal logistic regression

• It is hard to find a global minimum

• But can still use stochastic gradient descent to optimize

:

Important note

• In this formulation, we don’t care about the classification task itself like we do for

the logistic regression model we saw previously.

• The key point is that the parameters used to optimize this training objective—

when the training corpus is large enough—can give us very good representations

of words (following the principle of distributional hypothesis)!

How many parameters in this model?

How many parameters does this model have (i.e. what is size of)?

(a) d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

How many parameters in this model?

How many parameters does this model have (i.e. what is size of)?

(a) d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is 2 × | V | ×d.

word2vec formulation

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g.,

P(dog ∣ dog) should be low. If we use one set of vectors only,

it essentially needs to minimize udog⋅ udog..

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just uw but you can also

concatenate the two vectors..

Skip-gram with negative sampling

(SGNS) and other variants

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update vk with all the

words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let’s randomly sample K

(5-20) negative examples.

softmax:

Negative sampling:

σ(x) =
1

1 + exp(—x)

Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the

vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c’) is a negative pair for a

small number of sampled c’.

Similar to binary logistic regression, but we need to optimize and together.

P(w): sampling according to the frequency of words

Understanding SGNS

Understanding SGNS

The answer is (d).

We need to calculate gradients with respect to ut and (K + 1)

vi (one positive and K negatives).

Continuous Bag of Words (CBOW)

Skip-gram Continuous Bag of Words

(CBOW)

GloVe: Global Vectors

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

•

•

Key idea: let’s approximate ui ⋅ vj using their co-occurrence counts directly

Take the global co-occurrence statistics: Xi,j

•

•

Training faster

Scalable to very large corpora

FastText: Subword Embeddings

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

• Similar to Skip-gram, but break words into n-grams with n = 3 to 6

where: 3-grams: <wh, whe, her, ere, re>

4 grams: <whe, wher, here, ere>

5 grams: <wher, where, here>

6 grams: <where, where>

• Replace ui ·vj

Trained word embeddings available
• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

Differ in algorithms, text corpora, dimensions, cased/uncased…

Applied to many other languages

Easy to use!

Evaluating Word vectors

Extrinsic evaluation

• Let’s plug these word embeddings into a real NLP

system and see whether this improves performance

• Could take a long time but still the most important

evaluation metric

Extrinsic vs intrinsic evaluation

Intrinsic evaluation

•

•

•

Evaluate on a specific/intermediate subtask

Fast to compute

Not clear if it really helps downstream tasks

Extrinsic evaluation

A straightforward solution: given an input sentence

Instead of using a bag-of-words model, we can compute vec(x) = e(x1) + e(x2) + .. . + e(xn)

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word

embeddings as input of neural networks

x1, x2, . . . , xn

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353

353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353
/

Cosine similarity:

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

SG: Skip-gram

Intrinsic evaluation: word similarity

Intrinsic evaluation: word analogy

semantic

Chicago:Illinois Philadelphia: ? bad:worst cool: ?

syntactic

More examples at

http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

Word analogy test: a : a* :: b : b*

http://download.tensorflow.org/data/questions-words.txt

Intrinsic evaluation: word analogy

Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

More on Word vectors

Interesting characters/words

• 夵 《广韵》《集韵》并以冉切，音琰 (yan3)。物上大下小也。
又《集韵》他刀切，音叨(tao1)。进也。

• LGUer

• Looooooooong

A paper from ours： MorphTE

Guobing Gan, Peng Zhang, Sunzhu Li, Xiuqing Lu, Benyou Wang. MorphTE: Injecting Morphology in Tensorized Embeddings. NeurIPS 2022

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

Embeddings reflect cultural bias!

Thanks

Training Word vectors

How to train this model?

• To train such a model, we need to compute the vector gradient

• Again,

parameters, in one vector.

represents all 2d | V | model

Vectorized gradients

Vectorized gradients: exercises

Vectorized gradients: exercises

Let’s compute gradients for word2vec

Consider one pair of center/context words (t, c):

We need to compute the gradient of with respect to

ut and vk, ∀k ∈ V

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V

Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V

Q: Can you think of any issues with this algorithm?

