HHEP XK ECEI)

The Chinese University of Hong Kong, Shenzhen

CSC6052/5051/4100/DDA6307/
MDS5110
Natural Language Processing
ecture 3-1: Word Vectors
Spring 2025

Benyou Wang
School of Data Science

before the lecture

DeepSeek and Spring Festival

Founder of DeepSeek, Wenfeng Liang becomes famous (FFi2 ARIER)

For DeepSeek

DeepSeek V3

MLA and fine-grained experts for MoE (old DeepSeek also has this)

auxiliary-loss-free strategy for load balancing and a multi-token prediction training objective
FP8 training mixed precision (previously FP16/BF16) and many other optimization of trianning

DeepSeek R1

New way to achieve ol-level reasoning (without supervised finetuning): 1) DeepSeek-R1-Zero, a model
trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary

step; plus DeepSeek-R1 with multi-stage training and cold-start data before RL

https://arxiv.org/html/2412.19437v1 DeepSeek-V3 Technical Report
https://arxiv.org/abs/2501.12948 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948

Remarks

- In total 6M $ for training budget (1/30 of GPT-40)

- Reaching GPT-40 and O1 —level performance

- DeepSeek App ranks first in both China and US APP store. Breaking APP downloading record (previously
set by ChatGPT)

- Every big guys in US came out to talk about DeepSeek, negatively affecting the US stock
- DeepSeek's Al breakthrough 'is biggest shock to comeout of China in 185 years’ HEBERIAFRASFEIAN, ERZEFIR,
ARHEXAGHE, 185FRFHEHIMAIXT ALFARIERZEDeepSeek

- Itis open-source and it could be deployed by Huawei TPU Devices (inference without NVIDIA)

It Is time for LLM applications
Prompting, agent and build you own APP right now

Rethinking DeepSeek

- Budget is only about the final-round training, but this is a part of cost (exploring, testing and others are also costly).

- The training efficiency could be or was already achieved by other companies; but these companies did not claim from
this aspect (Demis mentioned Google Gemini).

- Distilled from western models (Demis claimed)

- Applied existing technologies well (did not invent something new)

https://pune.news/market/googles-demis-hassabis-criticizes-deepseeks-ai-model-and-cost-assertions-304887/
Quoted from Demis Hassabis, CEO of Deepmind, Nobel Prize in Chemistry

https://www.google.com/search?sca_esv=0fc7dd398656b67a&rlz=1C1GCEU_enHK1009HK1009&sxsrf=AHTn8zpBxjgz7U666odd93Z33Vodu3kPnw:1739372223499&q=Nobel+Prize+in+Chemistry&si=APYL9bu1Sl4M4TWndGcDs6ZL5WJXWNYEL_kgEEwAe0iMZIocdQ8QleTIreZYf_hCOJkx3aoTvQz0MBiLD8zAwrxzHZuMjqRNJEYKu5nHaeHSolIGsOUvHL2f3FwtNt4lWL3JQ-BeoHhkWNycMD0u_oKTsAL_JPzc_5zdjvDdaURSVMgfDkpRKg2_DvlZ3uw9wb6-nqyDfhAf0dY3Hc8zhZXwox1OY7GUlSuygwdbtmhd-OBmN_pPoDYcsQlKmNWRKM5S5HwqIAFwFwyqYO1cdVBx4C1inOUqag%3D%3D&sa=X&ved=2ahUKEwir6428sr6LAxWBmq8BHdF2G60QmxMoAHoECB0QAg

An analogy of distillation

@ ChatGPT: Fishing from the sea to a pool Others : directly fishing from such a small pool

We should not be always following,
we should try to lead.

Recap and overview

Relation between Word vectors and language modeling

How do we represent words in NLP models?
* n-gram models

n

Each word is just a string
P(wy, wa, ..wpn) = | | P(ws|wi_1)
i=1

or indices W; in the
vocabulary list

C(wi_l, ’LUZ) + «
C(wi_1)+ OJ‘V|

P(wi]wi_l) =

* Naive Bayes

Count(w;, ¢;)|+ «
> wey Count(w, ¢;) + | V|

P(w; | ¢j) =

How do we represent words in NLP models?

* Logistic regression

Var Definition Value in Fig. 5.2
x; count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
- 1f “no” € doc
string match
J /r{_(l)-hotherwise 1
x4 count(1st and 2nd pronouns € doc) 3

. 0
0 otherwise

{ 1 if “!” e doc
X5
x¢ log(word count of doc) In(64) =4.15

Why word meaning in NLP models?

* With words, a feature is a word identity (= string)

)

* Feature 5: The previous word was “terrible
* Requires exact same word to be in the training and testing set

“terrible” # “horrible”

* |f we can represent word meaning in vectors:

* The previous word was vector [35, 22, 17, ...]
* Now in the test set we might see a similar vector [34, 21, 14, ...]
* We can generalize to similar but unseen words!!!

What do words mean?

* Synonyms: couch/sofa, car/automobile, filbert/hazelnut

* Antonyms: dark/light, rise/fall, up/down vanish disappear 9.8
. S g but th N belief impression 5.95
ome words are not synonyms but they share some muscle bone 3.65

element of meaning modest flexible 0.98

e cat/dog, car/bicycle, cow/horse hole ~ agreement 0.3

 Some words are not similar but they are related SimLex-999
* coffee/cup, house/door, chef/menu

* Affective meanings or connotations: VilencaP Atousal P Do nAneR

courageous 8.05 e 7.38
music 7.67 DT 6.5
heartbreak 2.45 5.65 3.58

valence: the pleasantness of the stimulus cub 6.71 3.95 4.24

arousal: the intensity of emotion provoked by the stimulus

(Osgood et al., 1957)

dominance: the degree of control exerted by the stimulus

L exical resources

WordNet Search - 3.1

Word to search for: |mouse | Search WordNet |

Display Options: | (Select option to change) || Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

« S: (n) mouse (any of numerous small rodents typically resembling diminutive
rats having pointed snouts and small ears on elongated bodies with slender
usually hairless tails)

» S: (n) shiner, black eye, mouse (a swollen bruise caused by a blow to the
eye)

« S: (n) mouse (person who is quiet or timid)

« S: (n) mouse, computer mouse (a hand-operated electronic device that
controls the coordinates of a cursor on your computer screen as you move it
around on a pad; on the bottom of the device is a ball that rolls on the
surface of the pad) "a mouse takes much more room than a trackball”

Verb

« S: (v) sneak, mouse, creep, pussyfoot (to go stealthily or furtively) “..stead of
sneaking around spying on the neighbor's house"
« S: (v) mouse (manipulate the mouse of a computer)

http://wordnetweb.princeton.ed
u/

pubkzaton
sccumulation

aggregabon atcount book

book of account ®
sssemblage
ledast playsomot
@ scopt
colleckon sger .
. B
«
1000 D OOk
rulo DOOK ® yrume
o
anchon book s
o o
<
subdivision
< o
record
P o o
e <
product
o osarve
rola
produchon regater
schedule out sown

enter

Viord of Gog
Yorg
Senpture
Holy Wt
Holy Serplure
Oaod Book
Chnstian Bible

Bvie

Quran

Koran

akQur'an

(-) Huge amounts of human
labor to create and maintain

http://wordnetweb.princeton.edu/

Ucat

Uthe

The big idea: model of meaning focusing on similarity

0.130
—0.290

\ 0.276)

[0.234
0.266
0.239

\—0.199

[—0.224)

Udog

Ulanguage —

[—0.124
0.430
—0.200

\ 0.329)

/ 0.290 \
—0.441
0.762

\ 0.982

Similar words are “nearby
In the vector space”

oma
mother ®
fathe king ® at
01 ® @ husband °
o aunt
i chajr °
¢ omgput vife

m | —
Q
L,

-0.1

nboy i
Temews princ °®
02 ® @ ddligfRepPrincess
 § ®
0.7 /o'(/
o7 0.6 Y
ol > R = ! - L
;i = .'
[gender] e

(Bandyopadhyay et al. 2022)

Learning LMs via neural network brings word
embedding

i-th output = P(w, = i| context)
T softmax
XX [X] e)
T 7 »
#
;] most | computation here
r] Y
! Il 1
i
I i 1
1
. ' tanh |
] e e] I

shared parameters
across words

index for Wy _,.g index for wy,_5 index for wy_

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin. A Neural Probabilistic Language Model. JMLR, 2003

To contextualized word vectors using LMs

Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer. Deep
contextualized word representations. https://arxiv.org/abs/1802.05365.

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
xP(on|the cat sat) * P(the|the cat sat on)
xP(mat|the cat sat on the)

i

Implicit order

GPT-3 still acts in this way but the model is implemented as a very large neural network of 175-
billion parameters!

Language models:Broad Sense

Decoder-only models (GPT-x models)

< Encoder-only models (BERT, RoBERTa, ELECTRA)
« Encoder-decoder models (T5, BART)

ﬁsp
-

Mask LM Mask LM

& s 3

\

The latter two usually involve a
different pre-training objective.

["translate English to German: That is good."

(e () ()

"cola sentence: The
course is jumping well."

BERT

E[CLS]

on the grass. sentence2: A rhino

E E E = = is grazing in a field."

I N [SEP] e M

{"stsb sentencel: The rhino grazed

— <
"summarize: state authorities
E [Tok N 1[[SEP)](Tok 1] [TokM] dispatched emergency crews tuesday to

-

L

survey the damage after an onslaught
of severe weather in mississippi.."

Masked Sentence A Masked Sentence B

. 2
Unlabeled Sentence A and B Pair

"Das ist gut."]

"not acceptable"]

"six people hospitalized after
a storm in attala county."

Contents

Motivations to word embedding/word vectors
Word embedding and word vectors

Some variants

Evaluations

N-gram Language Models

the students opened their
*Question: How to learn a Language Model?

*Answer (pre- Deep Learning): learn an n-gram Language Model!

Definition: An n-gram is a chunk of n consecutive words.
sunigrams: “the”, “students”, “opened”, their”
*bigrams: “the students”, “students opened”, “opened their”
«trigrams: “the students opened”, “students opened their”

four-grams: “the students opened their”

ldea: Collect statistics about how frequent different n-grams are and use
these to predict next word.

N-gram Language Models

First we make a Markov assumption: x(n) depends only on the preceding n-1 words

n-1 words
A
f \

Pzt D|e® xM) = patTD|g®) | gltnt2) (assumption)

rob of an-gram
P S T,z glnt2) (definition of

prob of a (n-1)-gram | D®, .. =) conditional prob)

*Question: How do we get these n-gram and (n-1)-gram probabilities?

«Answer: By counting them in some large corpus of text!
count (1) 2(®) . at—n+2) (statistical approximation)

count(z®), ... x(t—n+2))

—~

N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

—as=the-plosctoi-stakied-the-clock=tae students opened their
u J

discard Y
condition on this

count(students opened their w)

P(w|students opened their) =
(w] B) count(students opened their)

For example, suppose that in the corpus:

« “students opened their” occurred 1000 times

« “students opened their books” occurred 400 times
* P(books | students opened their) = 0.4

« “students opened their exams” occurred 100 times
» P(exams | students opened their) = 0.1

24

Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w has

probability 0!

\ 4

(Partial) Solution: Add small
& to the count for every w €
V. This is called smoothing.

count(students opened their w
P(w|students opened their) = (B ,)
count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in

data? Then we can’t calculate
probability for any w!

\ 4

(Partial) Solution: Just condition on
“opened their ” instead.
This is called backoff.

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

25

Storage Problems with n-gram Language Models

Storage: Need to store
count for all n-grams
you saw In the corpus.

T~

count(students opened their w)

P(w|students opened their) =

count(students opened their)

Increasing n or increasing
corpus increases model size!

26

How to build a neural language model?

 Recall the Language Modeling task:
* Input: sequence of words W 2@ p®)
 Output: prob. dist. of the next word Pz ® . 2W)

* How about a window-based neural model?
» We saw this applied to Named Entity Recognition :

LOCATION

A

U
(000000000000 |

w

(0000 0000 0000 0000 0000]

f | f | I

museums in Paris are amazing

27

A fixed-window neural Language Model

books
laptop
output distribution >
y = softmax(Uh + by) € RIV : -
a A Z0
(0]
U
hidden |
hl—e;(%/;rew) (e00000c0c000)]
— | 7\
w

concatenated word embeddings

e=[eM:e?,e®); @] [OOOO 0000 0000 OOOO]

N N N N

words / one-hot vectors the students opene their
w(l)’$(2), 33(3),58(4) 213(1) CE(Q) dm(S) $(4)

28

A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM: fook laptop
» No sparsity problem s |
« Don’t need to store all observed n-grams
Remaining problems: a) 20
(0]
 Fixed window is too small U
 Enlarging window enlarges W (e00000000000)]
« Window can never be large enough! A
« x()and x(") are multiplied by completely W
different weights in W. No symmetry in how (6000 0000 0000 0000)
the Inputs are processed.
We need a neural architecture that can T T T T
process any length input i’(’g 5@ ZFZ:’(';f Z’é’)’
Recurrent NN is the solution ! nts ' |

Word Embedding and Word vectors

Byproducts of NNLM : word embedding

book

s laptop
Sy
a A ZS
(0]
U ﬁ
' |
{............J Word embedding/Vectors !
|%%4

(0000 0000 0000 0000]

N N N N

the opene thei

nts

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)
1 the idea that is represented by a word, phrase, etc.
1 the idea that a person wants to express by using words, signs, etc.
1 the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:
2 signifier (symbol) < signified (idea or thing)
= denotational semantics

o Treea{&, L, %, ...}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Representing words as discrete symbols

2 In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

2 Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[000000010000000]

2 Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal
There iIs no natural notion of similarity for one-hot vectors!

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Distributional hypothesis

Erae g e s
= ==

- =3 23
e I o =5

* “The meaning of a word is its use in the language”

[Wittgenstein Pl 43]
* “If A and B have almost identical environments we

say that they are synonyms.” Harris 1954]

* “You shall know a word by the company it keeps”

Firth 1957]

Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently

appear close-by
 “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
» One of the most successful ideas of modern statistical NLP!

* When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).
* We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Distributional hypothesis
“Ongchol”

Ongchoi is delicious sautéed with garlic FEaONgchoilREEEEE

Ongchoi is superb over rice Ongchoifit K IRAZEESERERE

Ongchoi leaves with salty sauces OngchoilttBt/E

Distributional hypothesis

“Ongchol”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice Q: What do you think ‘Ongchoi’
means?
Ongchoi leaves with salty sauces A asavory snack

B) a green vegetable
C¢) an alcoholic beverage

D) a cooking sauce

Distributional hypothesis

“Ongchol”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

You may have seen these spinach sautéed with garlic over rice chard stems

sentences before: and leaves are delicious collard greens and other

salty leafty greens

Something similar to Spinach (j&32)?

Distributional hypothesis

“Ongchoi”

Ongchol is a leafty green like spinach, chard or collard greens

kangkong

rau mudng

How can do the same thing computationally?

e Count the words in the context of ongchol

e See what other words occur in those contexts

We can represent a word’s context using vectors!

" Goal: represent words as short (50-300
WO rd e m b e d d I n g S dimensional) & dense (real-valued) vectors

Count-based approaches
* Used since the 90s

Prediction-based approaches

* Formulated as a machine learning problem

* Sparse word-word co-occurrence PPMI matrix Word2vec (Mikolov et al., 2013)

* Decomposed with SVD

e GloVe (Pennington et al., 2014

Underlying theory: Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”

Word embeddings: the learning problem

Learning vectors from text for representing words

* Input: a large text corpus, vocabulary V,
vector dimension d (e.g., 300)

* Output: f -V — Rd’

Each coordinate/dimension of the
vector doesn’t have a particular
Interpretation

VUcat —

Uthe =

(—0.224\

0.130
—0.290

\ 0.276 /

/ 0.234 \

0.266

0.239
\—0.199

Udog —

Ulanguage —

(—0.124\
0.430

Word embeddings

* Basic property: similar words have similar vectors

Word Cosine distance

norway 0.760124

denmark 0.715460

word W*= “sweden” finland 0.620022
switzerland 0.588132

” belgium 0.585835

arg max cos(e(w), e(w™)) netherlands 0.574631
weV iceland 9.562368
estonia 0.547621

slovenia 0.531408

cos(U, V) ranges between -1 and 1

ACL’19 Towards Understanding Linear Word Analogies

Word embeddings

Kawin Ethayarajh, David Duvenaud’, Graeme Hirst
University of Toronto
"Vector Institute
{kawin, duvenaud, gh}@cs.toronto.edu

Spain \
" A Italy \Madrid
Rome

Germany \
walked Berlin
. . Turkey \

. Ankara

* They have some other nice properties too!

. ‘~~* woman
ail sSwam R
T ® O BHSEIR, e i
A walking ® Canada Ottawa
queen \ R e T Tokyo
/ / O Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital
Uman — Uwoman ~ Uking — Uqueen Word analogy test: a : a* :: b : b*

2

b* = argmax cos(e(w),e(a™) —e(a) + e(b))

URome — Ultaly nax

UParis — UFrance

word2vec

¢ (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

o (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

w(t-2)

w(t-1)

w(t+1)

Thomas Mikolov w(t+2)

INPUT

N

PROJECTION OUTPUT

SUM

E— w(t)

Continuous Bag of Words

(CBOW)

KINPUT PROJECTION OUTPUT \

w(t-2)
/ w(t-1)
wit) ———» |
w(t+1)
_ =
Skip-gram

Skip-gram

o Assume that we have a large corpus Wy, Wy, ..., Wy € V
® Key idea: Use each word to predict other words in its context

® Context: a fixed window of size 2m (m = 2 in the example)

P(We_p | w) P(Weip | We)

P(We—q | We) P(Weyq | we)
N

banking crises as

problems turning

\ J L J
T T L Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

A classification
problem!

P(b | a) = given the center word
IS a, what is the probability that b is a
context word?

P(- | a)isa probability
distribution defhz Pw|a) =1

wevV

We are going to define
this distribution soon!

Skip-gram

P(we_y | wp) P(Weyz | We)
P(w,_ P .. .
(We—y | we) (Wess | we) Convert the training data into:
problems turning banking crises as .. (into, problems)
. , b ,) (into, turning)
outside context words center word outside context words (into ban klng)
in window of size 2 at position t in window of size 2 !

(into, crises)
(banking, turning)
(banking, into)
P(we_q | W) P(Weiq | we) (banking, crises)
(banking, as)

P(wi_p | we) P(Weyo | We)

problems turning into crises as

L Y J ! Y) L J

T

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Our goal is to find parameters that can maximize

P(problems | into) x P(turning | into) x P(banking | into) x P(crises | into) x P(turning | banking) x P(into | banking) x P(crises | banking) x P(as | banking)...

Skip-gram: objective function

* For each positiont = 1,2,...T, predict context words within context size m,
given center word W

all the parameters to be optimized

H P('wtﬂ- ‘ wt,é’)
mIj<m,j7#

-1l

e |tis equivalent as minimizing the (average) negative log likelihood:

0

1
J(0) = — 7 log L(0) = —= Z Z log P(wyy; | we; 0)

t 1 —m<3<m,7#0

How to define P(w,,; | w; 6)?

e Use two sets of vectors for each word in the vocabulary
u, € RY: vector for center word a, Va € V
vy, € RY: vector for context word , Vb € V

* Use inner product U, - Vi, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

exp(Wy, - Vu,, ;) /

ZkeV exp(Uy, - Vi)

Pwigj | we) =

Recallthat P(- | a)isa

probability distribution defined over
V...

... Vs multinominal logistic regression

exp(W¢ - X +b)

Multinomial logistic P(y =C | X) - =
regression: Z =1 exp (Wj - X + bj)

e Essentially a |V|-way classification problem

o Ifwe fix Wy, | itis reduced to a multinomial

logistic regression problem.

e However, since we have to learn both and
together, the training objective is non-convex.

... Vs multinominal logistic regression

AN “convex”

J(6)

0

* Itis hard to find a global minimum

AN “hon-convex”
J(6)
>
v

* But can still use stochastic gradient descent to optimize

oY) =9 _ v, ()

Important note

1 ol exp(Wyw, * Vu,.)
JO=-23 Y lg— e _tew

t:l —m<j<m,j#0 Zkevtxp(uwt Vk)

* In this formulation, we don’t care about the classification task itself like we do for
the logistic regression model we saw previously.

* The key point is that the parameters used to optimize this training objective—
when the training corpus is large enough—can give us very good representations
of words (following the principle of distributional hypothesis)!

How many parameters in this model?

/i
1 exp(Ww, * V,,,)
J(0) = —= E E log &

i —m<jamgro 2ekev OXP(Uw, - Vi)

How many parameters does this model have (i.e. what is size of)?
(a) d|V|

b 2d| V]| d = dimension of each vector
) 2m|V|

@ 2md| V|

How many parameters in this model?

i
1 CXp(uwt " Va, j)
J(0) = - E E log &

t=1 —m<;j<m,j7#0 2_kev XP(Uuw, - Vi)

How many parameters does this model have (i.e. what is size of)?
(a) d|V|

b 2d|V| d = dimension of each vector
) 2m|V|

@ 2md| V| The answer is (b).

Each word has two d-dimensional vectors, soitis 2 x | V | x d.

word2vec formulation

T
1 exp(Uw,; - Vuw,y,)
J(@) = - E E log i

t=1 —m<j<m,j#0 2 _kev €Xp(Wu, - Vi)

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g.,

P(dog | dog) should be low. If we use one set of vectors only,
it essentially needs to minimize udog' udog--

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just U,, but you can also
concatenate the two vectors..

Skip-gram with negative sampling
(SGNS) and other variants

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update V| with all the
words in the vocabulary! This is very expensive computationally.

9y - —Vc+zp(k|f)\% oy {(P(k|t)1)ut k=c

ouy ovi | Pk |Hw k+c

Negative sampling: instead of considering all the words in V, let’'s randomly sample K
(5-20) negative examples.

1

14

softmax: Y = — log (Z exp (Ut
keV

0.5+

Negative sampling: y = —log(o(u; - v, ZEJw —u; - v;))

exp(u; - ve) W= 1 exp(—x)
) |

Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, c) is a positive pair, and (t, ¢) is a negative pair for a
small number of sampled c’.

positive examples + negative examples -

t - t C t C y = —log(a(u; - v) ZEJNI’(R log(o(—u))
apricot tablespoon apricot aardvark apricot seven

apricot of apricot my apricot forever

apricot jam apricot where apricot dear P(w): sampling according to the frequency of words
apricot a apricot coaxial apricot if

Similar to binary logistic regression, but we need to optimize and together.

Ply=1|t,c)=oc(u;-v.) ply=0|t,d)=1—-0c(us-ve) =0c(—u; - ve)

Understanding SGNS

Y = _100 ut Ve ZEJMI ?(w) 10))

t=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in & for every (t, c) pair?

(a) Kd

(b) 2Kd

() (K+ 1)d
(d) (K+2)d

Understanding SGNS
y = —log(o(u; - v.)) — ZEJNE,(H.) log(co(—uy - v;))

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in & for every (t, c) pair?

(a) Kd

(b) 2Kd

(c) (K+ 1)d The answer is (d).

(d) (K+2)d We need to calculate gradients with respect to U, and (K + 1)

V; (one positive and K negatives).

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT PROJECTION OUTPUT

w(t-2)
w(t-1)
\SUM
/ w(t)
w(t+1) /
w(t+2)
Continuous Bag of Words

(CBOW)

T

GloVe: Global Vectors

* Key idea: let's approximate U; - Vi using their co-occurrence counts directly

® Take the global co-occurrence statistics: Xi,j

J(Q) = Z f(Xz,g) (11?; "V + bz + Bj — long-’j)z

i,jeV

® Training faster

10

o Scalable to very large corpora

08

f ~ 06

04

0.2

00

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

FastText: Subword Embeddings

Similar to Skip-gram, but break words into n-grams withn =3 to 6

where: 3-grams: <wh, whe, her, ere, re>

4 grams: <whe, wher, here, ere>
5 grams:. <wher, where, here>
6 grams: <where, where>

* Replace U; " V; by Z Ug - Vj

gen-grams(w;)

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

Trained word embeddings available

« word2vec: https://code.google.com/archive/p/word2vec/

e GloVe: https://nlp.stanford.edu/projects/glove/

o FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License vi.0 whose full text can be found at:
http://www.opendatacommons.org/licenses/pddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove 6B .zip

> @ ~E 1 - Z00 . . = (=R ¢ " P). o e Q 20
o Common Crawl 'A~_*, '.f)kerltt. oM v.’)cab. uncased, 300d vectors, 175 GB dowr ?f)du,l F:IU‘V(:,AZLJ'.\')'-_;C‘U-ilu

o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 203 GB download): glove.840B.300d.zip

o Twitter (2B tweets, 278 tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter.278.zip

« Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

Easy to use!

gensim.models KeyedVectors

model KeyedVectors.load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary-True)

vector model['easy']

In [17): model.similarity('straightforward', 'easy')
Out[17]: 0.5717043285477517
In [18]: model.similarity('simple', 'impossible')

Out[18]: 0.29156160264633707

In [19]: model.most similar('simple')

Out[19]: [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’', 0.6297484636306763),
('simplest', 0.6171397566795349),

('easy’', 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
('deceptively simple', 0.5743066072463989),
('simpler', 0.5537199378013611),

('simplistic', 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]

Evaluating Word vectors

Extrinsic vs Intrinsic evaluation

Extrinsic evaluation y

f
* Let’s plug these word embeddings into a real NLP
system and see whether this improves performance (ML model]
* Could take a long time but still the most important (0.31) (0.01) (1,87) (_3,17) (1_23)

I dont like this movie
Intrinsic evaluation

e Evaluate on a specific/intermediate subtask
e Fast to compute

e Not clear if it really helps downstream tasks

Extrinsig evaluation

f

[ML model }
(%) () Gy (20) (03)
O A S

I don’t like this movie

A straightforward solution: given an input sentence X1y X2y + o+ Xn

Instead of using a bag-of-words model, we can compute vec(x) = e(xy) + e(Xy) + ... + e(X,)

And then train a logistic regression classifier on vec(X) as we did before!

There are much better ways to do this e.g., take word
embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353

/

Word 1 Word 2 _Human (mean)_
tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58 cos(u;, u;) = _
plane car 5.77 [|lwifl2 x [[wj]]2
professor doctor 6.62
stock phone 1.62
stock CD el
stock jaguar 0.92

Cosine similarity:

Ui - U;

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |[WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 65.8 72.7 77.8 539 38.1
SVD-L 42B| 740 764 74.1 58.3 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 59.4 45.5

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*

b* = arg max cos(e(w), e(a™) — e(a) + e(b))

semantic syntactic

Chicago:lllinois Philadelphia: ? bad:worst cool: ?

More examples at
http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

http://download.tensorflow.org/data/questions-words.txt

Intrinsic evaluation: word analogy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 1.6B | 16.1 526 36.1
vLBL 300 1.5B | 542 648 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B | 63 81 73
SVD-S 300 6B | 367 46.6 42.1
SVD-L 300 6B | 566 63.0 60.1
CBOW' 300 6B | 63.6 674 657
SGY 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 573 689 637
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 81.9 69.3 75.0

Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.
All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

Common { hat
words
learn

- pizza (index)

-2 tasty (index)
Variations { taaaaasty - UNK (index)

9

9

misspellings laern UNK (index)
novel items Transformerify

UNK (index)
Finite vocabulary assumptions make even less sense in many languages.
» Many languages exhibit complex morphology, or word structure.
 The effect 1s more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

More on Word vectors

Interesting characters/words

LN () (BB Fus, 5 (yand). bk T
() MYy, E) (taol) . HAL.
. LGUer

. Looooooooong

A paper from ours: MorphTE

f} kind
Esl_t\@

I un
] i
kind | ness Teel
unkindly | Morpheme [un [kind] Iy
Segmentation Indexing
— — ; + —» | indness |
4 |4 : 1%
4] — [— f. i / 14
ness
ingl \A
m B AQ -
un
|M| Sy
feel
q
Vocabulary Morpheme Morpheme Word
Index Matrix Embedding Matrices Embedding matrix

Figure 3: The workflow of MorphTE. n is the order (number of morphemes for a word). ¢ is the size
of morpheme vectors. |Vl and IM| denote the size of word vocabulary and morpheme vocabulary.

Guobing Gan, Peng Zhang, Sunzhu Li, Xiuging Lu, Benyou Wang. MorphTE: Injecting Morphology in Tensorized Embeddings. NeurlPS 2022

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a -+ 9ay(1900s) b solemn
daft 9 read awful (1850s)
launting weet : majestic
Evtafil ' cheerful
rolicsone pleas: ;:;';F::i;
NCSOINE Ircl
ty ay (1950s
7 3(‘(' ¥) broadcast (1900s) horrib
newspapers : g ter ible
g isexual television 1900 wasdia;
gay (1990s) OMOSExUA \awful(i99°s')’
l&aBian hihc broadcast (1990s) awfully™" "

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
° X =Japan

Ask “father : doctor :: mother : x”
°© X =nurse

Ask “man : computer programmer :: woman : x”
o X =homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Thanks

Training Word vectors

How to train this model?

0= 1Y P g)

=] —m << m,j7£0 Zk’EV CXp(u’wt ’ Vk’)

e 10 train such a model, we need to compute the vector gradient V@ J(@) =5

zfx“’-Zy2
Vaardvark

VUq
e Again, @ represents all 2d | V | model
parameters, in one vector.
v . e
B — zebra] .
Ugardvark
ua,

Uzebra

Vectorized gradients

f(x)=x-a of

- = a
x,a e R" 0x

f:$1a1+$2a2+---+$nan

of [3f of 8f]
Ox Oxy Oxy’ ox,,

Vectorized gradients: exercises

0
Let f = exp(W - X), what is the value of a—? w,x € R"
X

(a) W

(b) exp(w - X)
(c) exp(w - X)W
(d) x

Vectorized gradients: exercises

0
Let f = exp(w - X), what is the value of 8_? w,x € R”
X

(a) w
(b) exp(W - x) The answer is (C).
(c) exp(wW - X)W

0 exp(Y, _, WiX;) =
@ B
k=1

g ox ;

l

Let’'s compute gradients for word2vec

7(6) = % Z Z log exp(Uw, * Vi,)

t=1 —m<j5j<m,j#0 | ZF"EV CXp(uwt . Vk)

Consider one pair of center/context words (t, C):

)= tog (S) _)

Zkev eXp(U—t ' Vk)

We need to compute the gradient of with respect to

u;and v,, Yk € V

Let’'s compute gradients for word2vec

) o (exp(u; - v.))

Zkev eXp(ut y Vk)

y = —log(exp(u; - v¢)) + 108;(2 exp(uy - Vi)
keV

= —w - V. + log(z exp(uy - vi))
keV

Let’'s compute gradients for word2vec

Oy O(—ug-v.) N O(log > 1oy exp(ug - vi))

y = — log (exp(uy - ve)) ou, ou, o,

ZkEV eXp(ut) vk) 0> rev exp(us-vg)

= —V —|— 8ut
C
Zkev exp(ut - V)

y = —log(exp(u - v¢)) + 108;(2 exp(u; - vi))
keV
= —u; - Ve + log(z exp(uy - Vi)) — v, + 2_kev eXP(Us - Vi) - Vi
keV Ekev exp(uy - vi)

Let’'s compute gradients for word2vec

Oy O(—ug-v.) N O(log > 1oy exp(ug - vi))

y = — log (exp(uy - ve)) ou, ou, o,

ZkEV eXp(ut) vk) 0> rev exp(us-vg)

ou
= —V —|— L
T Dkev exp(ug - vy)

y = —log(exp(uy - vc)) + log() exp(uy - vi;))
keV
= —w; - Ve + log(z exp(uy - vi)) — vt D_key €XP(U - Vi) - Vi
keV Ekev exp(uy - vi)

Recall that
exp(Uy, - Vi,)

Zkev exp(Wy, * Vi)

P(wt+j | TUt) =

Let’'s compute gradients for word2vec

Oy O(—ug-v.) N O(log > 1oy exp(ug - vi))
y = — log (exp(uy - ve)) ou, ou, o,
ZkEV eXp(ut) vk) 0> rev exp(us-vg)

_ ouy
= Ve > exp(u; - Vi)
L
y = —log(exp(us - v.)) + log(z exp(ug - vi)) keV
keV
= —up Ve + log(3 exp(u - i) s Drevesp(uvi) v
keV Ekev exp(uy - vi)
exp(uy - vi)
— —V,. — Z Vi
/ € s - Vs
Recall that = Ywev eXp(ur - Vi)
exXp(Uuw, * Vi,) =—ve+) Pk|t)v

P(wiys | we) = =t

Zkev exp(Wy, * Vi)

" Convert the training data into:
Overall algorithm o, problems)
into, turning)
into, banking)

(
(
(

i into, crises
® Input: text corpus, embedding size d, vocabulary V' contextsize m ?bankinglzj tu)rning)
(
(
(

banking, into)
banking, crises)
banking, as)

Initialize U;, V; randomly VI € V

o
Run through the training corpus and for each training instance (t, c):

dy oy
=2 —7 = —v.+ Pk | t)vk
" u, ouy LEZV

8) J— —_ 3
e Update Vi vy —n—L vkev % _ {(P(k|t) Du, k=c
Ovy OV P(k | t)u; k # c

e Update u; ¢ wy

" Convert the training data into:
Overall algorithm o, problems)
into, turning)
into, banking)

(
(
(

i into, crises
® Input: text corpus, embedding size d, vocabulary V' contextsize m Soankinglzj tu)rning)
(
(
(

banking, into)
banking, crises)
banking, as)

Initialize U;, V; randomly VI € V

[J
Run through the training corpus and for each training instance (t, c):

0 dy _
e Update u; < uy — na—i vl —Ve + LEZVP(Z{: | t)vi
8 J— e — 3
e Update vievi—n-Y vkey O _ JPEIH-Du k=c
Ovy OV P(k | t)u; k # c

Q: Can you think of any issues with this algorithm?

