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DeepSeek and Spring Festival

Founder of DeepSeek, Wenfeng Liang becomes famous (年轻人的偶像)



For DeepSeek

DeepSeek V3
- MLA and fine-grained experts for MoE (old DeepSeek also has this)

- auxiliary-loss-free strategy for load balancing and a multi-token prediction training objective

- FP8 training mixed precision (previously FP16/BF16) and many other optimization of trianning

DeepSeek R1
- New way to achieve o1-level reasoning (without supervised finetuning): 1) DeepSeek-R1-Zero, a model 

trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary 

step; plus DeepSeek-R1 with multi-stage training and cold-start data before RL

https://arxiv.org/html/2412.19437v1 DeepSeek-V3 Technical Report

https://arxiv.org/abs/2501.12948 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948


Remarks

- In total 6M $ for training budget (1/30 of GPT-4o)

- Reaching GPT-4o and O1 –level performance

- DeepSeek App ranks first in both China and US APP store. Breaking APP downloading record (previously 

set by ChatGPT)

- Every big guys in US came out to talk about DeepSeek, negatively affecting the US stock
- DeepSeek's Al breakthrough 'is biggest shock to comeout of China in 185 years’ 首都医科大学校长饶毅认为，在科学和技

术相关的方面，185年来中国出现的对人类最大的震撼是DeepSeek

- It is open-source and it could be deployed by Huawei TPU Devices (inference without NVIDIA)



It is time for LLM applications
Prompting, agent and build you own APP right now



Rethinking DeepSeek

- Budget is only about the final-round training, but this is a part of cost (exploring, testing and others are also costly).

- The training efficiency could be or was already achieved by other companies; but these companies did not claim from 

this aspect (Demis mentioned Google Gemini).

- Distilled from western models (Demis claimed)

- Applied existing technologies well  (did not invent something new)

https://pune.news/market/googles-demis-hassabis-criticizes-deepseeks-ai-model-and-cost-assertions-304887/

Quoted from Demis Hassabis, CEO of Deepmind, Nobel Prize in Chemistry

https://www.google.com/search?sca_esv=0fc7dd398656b67a&rlz=1C1GCEU_enHK1009HK1009&sxsrf=AHTn8zpBxjgz7U666odd93Z33Vodu3kPnw:1739372223499&q=Nobel+Prize+in+Chemistry&si=APYL9bu1Sl4M4TWndGcDs6ZL5WJXWNYEL_kgEEwAe0iMZIocdQ8QleTIreZYf_hCOJkx3aoTvQz0MBiLD8zAwrxzHZuMjqRNJEYKu5nHaeHSolIGsOUvHL2f3FwtNt4lWL3JQ-BeoHhkWNycMD0u_oKTsAL_JPzc_5zdjvDdaURSVMgfDkpRKg2_DvlZ3uw9wb6-nqyDfhAf0dY3Hc8zhZXwox1OY7GUlSuygwdbtmhd-OBmN_pPoDYcsQlKmNWRKM5S5HwqIAFwFwyqYO1cdVBx4C1inOUqag%3D%3D&sa=X&ved=2ahUKEwir6428sr6LAxWBmq8BHdF2G60QmxMoAHoECB0QAg


An analogy of distillation  

ChatGPT: Fishing from the sea to a pool Others : directly fishing from such a small pool



We should not be always following, 
we should try to lead. 



Recap and overview
Relation between Word vectors and language modeling



How do we represent words in NLP models?
• n-gram models

• Naive Bayes

Each word is just a string

or indices wi in the 

vocabulary list



string match

• Logistic regression

How do we represent words in NLP models?



Why word meaning in NLP models?
• With words, a feature is a word identity (= string)

• Feature 5: `The previous word was “terrible”’

• Requires exact same word to be in the training and testing set

“terrible” ≠ “horrible”

• If we can represent word meaning in vectors:

• The previous word was vector [35, 22, 17, …]

• Now in the test set we might see a similar vector [34, 21, 14, …]

• We can generalize to similar but unseen words!!!



• Synonyms: couch/sofa, car/automobile, filbert/hazelnut

• Antonyms: dark/light, rise/fall, up/down

• Some words are not synonyms but they share some  

element of meaning

• cat/dog, car/bicycle, cow/horse

• Some words are not similar but they are related

• coffee/cup, house/door, chef/menu

• Affective meanings or connotations:

What do words mean?

SimLex-999

(Osgood et al., 1957)



Lexical resources

http://wordnetweb.princeton.ed

u/

(-) Huge amounts of human 

labor to create and maintain

http://wordnetweb.princeton.edu/


The big idea: model of meaning focusing on similarity

Similar words are “nearby 

in the vector space”

(Bandyopadhyay et al. 2022)



Learning LMs via neural network brings word 

embedding

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin. A Neural Probabilistic Language Model. JMLR, 2003



To contextualized word vectors using LMs

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer. Deep 

contextualized word representations.  https://arxiv.org/abs/1802.05365. 



Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is  implemented as a very large neural network of  175-

billion parameters!



Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)
The latter two usually involve a 

different pre-training objective. 



Contents

• Motivations to word embedding/word vectors

• Word embedding and word vectors

• Some variants 

• Evaluations



the students opened their 

•Question: How to learn a Language Model?

•Answer (pre- Deep Learning): learn an n-gram Language Model!

•Definition: An n-gram is a chunk of n consecutive words.

•unigrams: “the”, “students”, “opened”, ”their”

•bigrams: “the students”, “students opened”, “opened their”

•trigrams: “the students opened”, “students opened their”

•four-grams: “the students opened their”

•Idea: Collect statistics about how frequent different n-grams are and use 

these to  predict next word.

N-gram Language Models



N-gram Language Models

•First we make a Markov assumption: 𝑥
(n) 

depends only on the preceding n-1 words

•Question: How do we get these n-gram and (n-1)-gram probabilities?

•Answer: By counting them in some large corpus of text!

(statistical  approximation)



N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their 

discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• P(exams | students opened their) = 0.1
24



Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.

Typically, we can’t have n bigger than 5.

Problem: What if “students  

opened their” never occurred in  

data? Then we can’t calculate  

probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students  

opened their 𝑤” never  

occurred in data? Then 𝑤 has  

probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 

𝛿 to the count for every 𝑤∈
𝑉.  This is called smoothing.

(Partial) Solution: Just condition  on 

“opened their” instead.

This is called backoff.

25



Storage Problems with n-gram Language Models

26

Storage: Need to store  

count for all n-grams 

you  saw in the corpus.

Increasing n or increasing  

corpus increases model size!



How to build a neural language model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition :

LOCATION

in Paris are amazingmuseums 27



A fixed-window neural Language Model

the students opene

d

their

books

laptop

s

concatenated word embeddings

words / one-hot vectors

hidden layer

a zo

o

output distribution

28



A fixed-window neural Language Model
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Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥(!) and 𝑥(") are multiplied by  completely 

different weights in 𝑊. No symmetry in how 

the inputs are  processed.

We need a neural architecture  that can 

process any length input

Recurrent NN is the solution !

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model



Word Embedding and Word vectors
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Word embedding/Vectors !

Byproducts of NNLM : word embedding



How do we represent the meaning of a word?

Definition: meaning (Webster dictionary) 

❏ the idea that is represented by a word, phrase, etc. 

❏ the idea that a person wants to express by using words, signs, etc. 

❏ the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning: 

❏ signifier (symbol) ⟺ signified (idea or thing) 

= denotational semantics 

❏ Tree ⟺ {🌳, 🌲, 🌴, …}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Representing words as discrete symbols

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

❏ In traditional NLP, we regard words as discrete symbols: 

hotel, conference, motel – a localist representation 

❏ Such symbols for words can be represented by one-hot vectors: 

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] 

❏ Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!



Distributional hypothesis

• “The meaning of a word is its use in the language”

• “If A and B have almost identical environments we 

say that they are synonyms.”

• “You shall know a word by the company it keeps”

[Wittgenstein PI 43]

[Harris 1954]

[Firth 1957]



Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently 

appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11) 

•  One of the most successful ideas of modern statistical NLP! 

• When a word w appears in a text, its context is the set of words that appear nearby 

(within a fixed-size window). 

• We use the many contexts of w to build up a representation of w

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Distributional hypothesis

Ongchoi is delicious sautéed with garlic    蒜蓉Ongchoi味道鲜美

Ongchoi is superb over rice     Ongchoi配米饭吃起来味道极佳

Ongchoi leaves with salty sauces Ongchoi叶配咸酱

“Ongchoi”



Distributional hypothesis

Q: What do you think ‘Ongchoi’ 

means?

A) a savory snack

B) a green vegetable

C) an alcoholic beverage

D) a cooking sauce

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice 

Ongchoi leaves with salty sauces

“Ongchoi”



Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice 

Ongchoi leaves with salty sauces

You may have seen these 

sentences before:

spinach sautéed with garlic over rice chard stems 

and leaves are delicious collard greens and other 

salty leafty greens

Something similar to Spinach (菠菜)？



Distributional hypothesis

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard greens



How can do the same thing computationally?

•

•

Count the words in the context of ongchoi

See what other words occur in those contexts

We can represent a word’s context using vectors!



Word embeddings

Count-based approaches

• Used since the 90s

• Sparse word-word co-occurrence PPMI matrix

• Decomposed with SVD

Prediction-based approaches

• Formulated as a machine learning problem

• Word2vec (Mikolov et al., 2013)

• GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)

“Similar words occur in similar contexts”

Goal: represent words as short (50-300 

dimensional) & dense (real-valued) vectors



Word embeddings: the learning problem

Learning vectors from text for representing words

• Input: a large text corpus, vocabulary V, 

vector dimension d (e.g., 300)

• Output:

Each coordinate/dimension of the 

vector doesn’t have a particular 

interpretation



Word embeddings

• Basic property: similar words have similar vectors

word w*= “sweden”

cos(u, v) ranges between -1 and 1



Word embeddings

• They have some other nice properties too!

ACL’19



word2vec
•

•

(Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

(Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Skip-gramContinuous Bag of Words 

(CBOW)

Thomas Mikolov



Skip-gram

A classification 

problem!

•

•

•

Assume that we have a large corpus w1, w2, …, wT ∈ V

P(b ∣ a) = given the center word 

is a, what is the probability that b is a 

context word?

P( ⋅∣ a) is a probability 

distribution defined over V: 

Context: a fixed window of size 2m (m = 2 in the example)

Key idea: Use each word to predict other words in its context

We are going to define 

this distribution soon!



Our goal is to find parameters that can maximize

Convert the training data into: 

(into, problems)

(into, turning) 

(into, banking) 

(into, crises) 

(banking, turning) 

(banking, into) 

(banking, crises) 

(banking, as)

…

Skip-gram

P(turning ∣ banking) ×P(into ∣ banking) ×P(crises ∣ banking) ×P(as ∣ banking)…P(problems ∣ into) ×P(turning ∣ into) × P(banking ∣ into) × P(crises ∣ into) ×



Skip-gram: objective function
• For each position t = 1,2,…T, predict context words within context size m, 

given center word wt:

• It is equivalent as minimizing the (average) negative log likelihood:



How to define P(wt+j∣ wt; θ)?

• Use two sets of vectors for each word in the vocabulary

ua ∈ ℝd: vector for center word a

vb ∈ ℝd: vector for context word 

, ∀a ∈ V

, ∀b ∈ V

• Use inner product ua ⋅ vb to measure how likely word a appears with context word b

Recall that P( ⋅∣ a) is a 

probability distribution defined over 

V…



… vs multinominal logistic regression

•

•

Essentially a |V|-way classification problem

If we fix , it is reduced to a multinomial

logistic regression problem.

• However, since we have to learn both and 

together, the training objective is non-convex.

P(y = c | x) =
exp(wc ⋅ x + bc)

∑
m

j=1
exp(wj ⋅ x + bj)

Multinomial logistic 

regression:



… vs multinominal logistic regression

• It is hard to find a global minimum

• But can still use stochastic gradient descent to optimize 

:



Important note

• In this formulation, we don’t care about the classification task itself like we do for 

the logistic regression model we saw previously.

• The key point is that the parameters used to optimize this training objective—

when the training corpus is large enough—can give us very good representations 

of words (following the principle of distributional hypothesis)!



How many parameters in this model?

How many parameters does this model have (i.e. what is size of )?

(a)     d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector



How many parameters in this model?

How many parameters does this model have (i.e. what is size of )?

(a)     d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is 2 × | V | ×d.



word2vec formulation

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g., 

P(dog ∣ dog) should be low. If we use one set of vectors only,

it essentially needs to minimize udog⋅ udog..

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just uw but you can also 

concatenate the two vectors..



Skip-gram with negative sampling 

(SGNS) and other variants



Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update vk with all the 

words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let’s randomly sample K

(5-20) negative examples.

softmax:

Negative sampling:

σ(x) =
1

1 + exp(—x)



Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the 

vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c’) is a negative pair for a 

small number of sampled c’.

Similar to binary logistic regression, but we need to optimize and together.

P(w): sampling according to the frequency of words



Understanding SGNS



Understanding SGNS

The answer is (d).

We need to calculate gradients with respect to ut and (K + 1) 

vi (one positive and K negatives).



Continuous Bag of Words (CBOW)

Skip-gram Continuous Bag of Words 

(CBOW)



GloVe: Global Vectors

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

•

•

Key idea: let’s approximate ui ⋅ vj using their co-occurrence counts directly 

Take the global co-occurrence statistics: Xi,j

•

•

Training faster

Scalable to very large corpora



FastText: Subword Embeddings

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

• Similar to Skip-gram, but break words into n-grams with n = 3 to 6

where: 3-grams: <wh, whe, her, ere, re>

4 grams: <whe, wher, here, ere>

5 grams: <wher, where, here>

6 grams: <where, where>

• Replace ui ·vj 



Trained word embeddings available
• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

Differ in algorithms, text corpora, dimensions, cased/uncased… 

Applied to many other languages



Easy to use!



Evaluating Word vectors



Extrinsic evaluation

• Let’s plug these word embeddings into a real NLP 

system and see whether this improves performance

• Could take a long time but still the most important 

evaluation metric

Extrinsic vs intrinsic evaluation

Intrinsic evaluation

•

•

•

Evaluate on a specific/intermediate subtask

Fast to compute

Not clear if it really helps downstream tasks



Extrinsic evaluation

A straightforward solution: given an input sentence 

Instead of using a bag-of-words model, we can compute vec(x) = e(x1) + e(x2) + .. . + e(xn)

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word 

embeddings as input of neural networks

x1, x2, . . . , xn



Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353

353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353
/

Cosine similarity:

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


SG: Skip-gram

Intrinsic evaluation: word similarity



Intrinsic evaluation: word analogy

semantic

Chicago:Illinois Philadelphia: ? bad:worst cool: ?

syntactic

More examples at

http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

Word analogy test: a : a* :: b : b*

http://download.tensorflow.org/data/questions-words.txt


Intrinsic evaluation: word analogy



Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



More on Word vectors



Interesting characters/words

• 夵 《广韵》《集韵》并以冉切，音琰 (yan3)。物上大下小也。
又《集韵》他刀切，音叨(tao1)。进也。

• LGUer

• Looooooooong



A paper from ours： MorphTE

Guobing Gan, Peng Zhang, Sunzhu Li, Xiuqing Lu, Benyou Wang. MorphTE: Injecting Morphology in Tensorized Embeddings. NeurIPS 2022



Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift



Embeddings reflect cultural bias!



Thanks



Training Word vectors



How to train this model?

• To train such a model, we need to compute the vector gradient 

• Again,

parameters, in one vector.

represents all 2d | V | model



Vectorized gradients



Vectorized gradients: exercises



Vectorized gradients: exercises



Let’s compute gradients for word2vec

Consider one pair of center/context words (t, c):

We need to compute the gradient of with respect to

ut and vk, ∀k ∈ V



Let’s compute gradients for word2vec



Let’s compute gradients for word2vec



Let’s compute gradients for word2vec



Let’s compute gradients for word2vec



Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V



Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V

Q: Can you think of any issues with this algorithm?


